Image re-ranking and rank aggregation based on similarity of ranked lists
作者:
Highlights:
•
摘要
In Content-based Image Retrieval (CBIR) systems, ranking accurately collection images is of great relevance. Users are interested in the returned images placed at the first positions, which usually are the most relevant ones. Collection images are ranked in increasing order of their distance to the query pattern (e.g., query image) defined by users. Therefore, the effectiveness of these systems is very dependent on the accuracy of the distance function adopted. In this paper, we present a novel context-based approach for redefining distances and later re-ranking images aiming to improve the effectiveness of CBIR systems. In our approach, distances among images are redefined based on the similarity of their ranked lists. Conducted experiments involving shape, color, and texture descriptors demonstrate the effectiveness of our method.
论文关键词:Content-based image retrieval,Re-ranking,Ranked lists,Rank aggregation
论文评审过程:Received 30 April 2012, Revised 18 November 2012, Accepted 1 January 2013, Available online 15 January 2013.
论文官网地址:https://doi.org/10.1016/j.patcog.2013.01.004