Semi-supervised metric learning via topology preserving multiple semi-supervised assumptions
作者:
Highlights:
•
摘要
Learning an appropriate distance metric is a critical problem in pattern recognition. This paper addresses the problem of semi-supervised metric learning. We propose a new regularized semi-supervised metric learning (RSSML) method using local topology and triplet constraints. Our regularizer is designed and developed based on local topology, which is represented by local neighbors from the local smoothness, cluster (low density) and manifold information point of view. The regularizer is then combined with the large margin hinge loss on the triplet constraints. In other words, we keep a large margin between different labeled samples, and in the meanwhile, we use the unlabeled samples to regularize it. Then the semi-supervised metric learning method is developed. We have performed experiments on classification using publicly available databases to evaluate the proposed method. To our best knowledge, this is the only method satisfying all the three semi-supervised assumptions, namely smoothness, cluster (low density) and manifold. Experimental results have shown that the proposed method outperforms state-of-the-art semi-supervised distance metric learning algorithms.
论文关键词:Semi-supervised metric learning,Topology preserving,Semi-supervised assumptions
论文评审过程:Received 25 July 2012, Revised 28 January 2013, Accepted 27 February 2013, Available online 13 March 2013.
论文官网地址:https://doi.org/10.1016/j.patcog.2013.02.015