Retinal vessel delineation using a brain-inspired wavelet transform and random forest
作者:
Highlights:
•
摘要
This paper presents a supervised retinal vessel segmentation by incorporating vessel filtering and wavelet transform features from orientation scores (OSs), and green intensity. Through an anisotropic wavelet-type transform, a 2D image is lifted to a 3D orientation score in the Lie-group domain of positions and orientations R2⋊S1. Elongated structures are disentangled into their corresponding orientation planes and enhanced via multi-orientation vessel filtering. In addition, scale-selective OSs (in the domain of positions, orientations and scales R2⋊S1×R+) are obtained by adding a scale adaptation to the wavelet transform. Features are optimally extracted by taking maximum orientation responses at multiple scales, to represent vessels of changing calibers. Finally, we train a Random Forest classifier for vessel segmentation. Extensive validations show that our method achieves a competitive segmentation, and better vessel preservation with less false detections compared with the state-of-the-art methods.
论文关键词:Random forest,Retinal image,Vessel segmentation,Wavelet transform,Orientation score (OS)
论文评审过程:Received 28 July 2016, Revised 3 January 2017, Accepted 4 April 2017, Available online 15 April 2017, Version of Record 24 April 2017.
论文官网地址:https://doi.org/10.1016/j.patcog.2017.04.008