IAN: The Individual Aggregation Network for Person Search

作者:

Highlights:

摘要

Person search in real-world scenarios is a new challenging computer version task with many meaningful applications. The challenge of this task mainly comes from: (1) unavailable bounding boxes for pedestrians and the model needs to search for the person over the whole gallery images; (2) huge variance of visual appearance of a particular person owing to varying poses, lighting conditions, and occlusions. To address these two critical issues in modern person search applications, we propose a novel Individual Aggregation Network (IAN) that can accurately localize persons by learning to minimize intra-person feature variations. IAN is built upon the state-of-the-art object detection framework, i.e., faster R-CNN, so that high-quality region proposals for pedestrians can be produced in an online manner. In addition, to relieve the negative effect caused by varying visual appearances of the same individual, IAN introduces a novel center loss that can increase the intra-class compactness of feature representations. The engaged center loss encourages persons with the same identity to have similar feature characteristics. Extensive experimental results on two benchmarks, i.e., CUHK-SYSU and PRW, well demonstrate the superiority of the proposed model. In particular, IAN achieves 77.23% mAP and 80.45% top-1 accuracy on CUHK-SYSU, which outperform the state-of-the-art by 1.7% and 1.85%, respectively.

论文关键词:person search,re-identification,pedestrian detection,softmax loss,center loss,dropout

论文评审过程:Received 31 August 2017, Revised 3 October 2018, Accepted 28 October 2018, Available online 31 October 2018, Version of Record 6 November 2018.

论文官网地址:https://doi.org/10.1016/j.patcog.2018.10.028