A control scheme based on ER-materials for vibration attenuation of dynamical systems
作者:
Highlights:
•
摘要
Based on a bang-bang control scheme acting on so called “electrorheological” fluids (ER-fluids), a vibration suppression method is proposed for a class of n-dimensional systems subjected to unknown perturbations. The proposed controller relates to robustness vis-a-vis unknown but bounded disturbances. Two approaches for designing the control scheme are presented and compared. On the one hand we employ Lyapunov stability theory; on the other hand there is an obvious reason for minimizing rate of energy change due to the spring/damper elements by varying the ER-fluid properties appropriately. The system under investigation is an n-degree of freedom one consisting of masses and spring/damper elements. The spring/damper elements contain an ER-fluid; their stiffness and damping properties are changed by varying an imposed electrical field. The changes in spring and damping properties can be effected in microseconds since the control does not involve the separate dynamics (inertia) of usual actuators. Detailed derivations are presented for a two-dimensional case and simulations are carried out for examples of smooth periodic and discontinuous periodic excitation forces.
论文关键词:
论文评审过程:Available online 7 April 2000.
论文官网地址:https://doi.org/10.1016/0096-3003(94)00109-H