Analytical and numerical studies of a singularly perturbed Boussinesq equation
作者:
Highlights:
•
摘要
We study the singularly perturbed (sixth-order) Boussinesq equation recently introduced by Daripa and Hua [Appl. Math. Comput. 101 (1999) 159]. Motivated by their work, we formally derive this equation from two-dimensional potential flow equations governing the small amplitude long capillary-gravity waves on the surface of shallow water for Bond number very close to but less than 1/3. On the basis of far-field analyses and heuristic arguments, we show that the traveling wave solutions of this equation are weakly non-local solitary waves characterized by small amplitude fast oscillations in the far-field. We review various analytical and numerical methods originally devised to obtain this type of weakly non-local solitary wave solutions of the singularly perturbed (fifth-order) KdV equation. Using these methods, we obtain weakly non-local solitary wave solutions of the singularly perturbed (sixth-order) Boussinesq equation and provide estimates of the amplitude of oscillations which persist in the far-field.
论文关键词:Capillary-gravity waves,Singularly perturbed Boussinesq equation,Weakly non-local solitary waves,Asymptotics beyond all orders,Pseudospectral method
论文评审过程:Available online 31 May 2002.
论文官网地址:https://doi.org/10.1016/S0096-3003(01)00166-7