Multiple-grid convergence acceleration of viscous and inviscid flow computations

作者:

Highlights:

摘要

A multiple-grid algorithm for use in efficiently obtaining steady solutions to the Euler and Navier-Stokes equations is presented. The convergence of a simple, explicit fine-grid solution procedure is accelerated on a sequence of successively coarser grids by a coarse-grid information propagation method which rapidly eliminates transients from the computational domain. This use of multiple-gridding to increase the convergence rate results in substantially reduced work requirements for the numerical solution of a wide range of flow problems. Computational results are presented for subsonic and transonic inviscid flows and for laminar and turbulent, attached and separated, subsonic viscous flows. Work reduction factors as large as eight, in comparison to the basic fine-grid algorithm, have been obtained. Possibilities for further performance improvement are discussed.

论文关键词:

论文评审过程:Available online 22 March 2002.

论文官网地址:https://doi.org/10.1016/0096-3003(83)90021-8