On numerical improvement of open Newton–Cotes quadrature rules
作者:
Highlights:
•
摘要
In this paper, we discuss about numerical improvement of the Open Newton–Cotes integration rules that are in forms of:∫a=x-1b=xn+1=x-1+(n+2)hf(x)dx≃∑k=0nBk(n)f(x-1+(k+1)h).It is known that the precision degree of above formula is n + 1 for even n′s and is n for odd n′s. However, if the integral bounds are considered as two additional variables (i.e. a and h in fact) we reach a nonlinear system that numerically improves the precision degree of the above integration formula up to degree n + 2. In this way, some numerical tests are given to show the numerical superiority of our idea with respect to the usual Open Newton–Cotes integration rules.
论文关键词:Open Newton–Cotes formula,Numerical integration methods,Degree of accuracy,The method of undetermined coefficient,The method of solving nonlinear systems,Midpoint rule
论文评审过程:Available online 27 September 2005.
论文官网地址:https://doi.org/10.1016/j.amc.2005.07.030