A fast eigenvalue algorithm for Pascal matrices
作者:
Highlights:
•
摘要
We present an algorithm that can find all the eigenvalues of an n × n symmetric Pascal matrices in O(n2log n) operations. We take advantage of real symmetry and the Pascal structure. Our scheme consists of an O(n2log n) Lanczos tridiagonalization procedure and an O(n) QR diagonalization method and the Fast Fourier Transform (FFT).
论文关键词:Fast algorithm,Pascal matrix,Eigenvalues,FFT,Toeplitz matrix
论文评审过程:Available online 24 July 2006.
论文官网地址:https://doi.org/10.1016/j.amc.2006.05.093