Dynamic sensitivities in chaotic dynamical systems
作者:
Highlights:
•
摘要
A simple method for the calculation of dynamic logarithmic gains, i.e., normalized sensitivities, is applied to four typical chaotic systems (Lorenz model, Rössler’s equations, double scroll attractor, and Langford’s equations) to examine an effect of the chaotic behavior on the dynamic logarithmic gains. As a result, it is found that the dynamic logarithmic gains increase exponentially while the chaotic behavior is observed. It is also shown that the observation of the dynamic logarithmic gains is useful to accurately identify the generation of the chaos.
论文关键词:Dynamic sensitivity,Logarithmic gain,Chaos,Lorenz model,Rössler’s equations,Double scroll attractor,Langford’s equations
论文评审过程:Available online 28 September 2006.
论文官网地址:https://doi.org/10.1016/j.amc.2006.07.141