Neumann inhomogeneous boundary value problem for the n + 1 complex Ginzburg–Landau equation

作者:

Highlights:

摘要

We study the following Neumann inhomogeneous boundary value problem for the complex Ginzburg–Landau equation on Ω⊂Rn(n⩽3):ut=(a+iα)Δu-(b+iβ)|u|2u(a,b,t>0) under initial condition u(x, 0) = h(x) for x ∈ Ω and Neumann boundary condition ∂u∂n=K(x,t) on ∂Ω where h, K are given functions. Under suitable conditions, we prove the existence of a global solution in H1.

论文关键词:Complex Ginzburg–Landau equation,Neumann inhomogeneous boundary value problem,Weak solution,Global existence

论文评审过程:Available online 14 November 2006.

论文官网地址:https://doi.org/10.1016/j.amc.2006.09.131