Existence of positive boundary blow-up solutions for quasilinear elliptic equations via sub and supersolutions
作者:
Highlights:
•
摘要
In this paper, the existence of positive boundary blow-up weak solution for the quasilinear elliptic equation div(∣∇u∣p−2∇u) = m(x)f(u) in a smooth bounded domain Ω ⊆ RN or global space Ω = RN are obtained under new conditions. Our proof is based on the method of sub and supersolutions.
论文关键词:Quasilinear elliptic equation,Boundary blow-up,Sub and supersolutions,Keller–Osserman condition,Comparison principle
论文评审过程:Available online 14 November 2006.
论文官网地址:https://doi.org/10.1016/j.amc.2006.10.010