On the performance of parallel approximate inverse preconditioning using Java multithreading techniques
作者:
Highlights:
•
摘要
In this paper a parallel shared memory Java multithreaded design and implementation of the explicit approximate inverse preconditioning is presented for solving efficiently arrow-type linear systems on symmetric multiprocessor systems. A new parallel algorithm for computing a class of optimized approximate inverse matrix is introduced. The performance on a symmetric multiprocessor system, using Java multithreading, is investigated by solving characteristic arrow-type linear systems and numerical results are given, considering the parallel performance of the construction of the optimized approximate inverse and the explicit preconditioned generalized conjugate gradient square scheme.
论文关键词:Arrow-type matrix,Parallel approximate inverse matrix algorithm,Preconditioning,Parallel conjugate gradient type methods,Object oriented methodology,Java multithreading,Symmetric multiprocessor systems
论文评审过程:Available online 19 January 2007.
论文官网地址:https://doi.org/10.1016/j.amc.2007.01.024