Parallel hybrid evolutionary computation: Automatic tuning of parameters for parallel gene expression programming
作者:
Highlights:
•
摘要
A parallel hybrid framework that combines gene expression programming (GEP) as the evolutionary problem-solving methodology and alternative meta-heuristics for tuning parameter values of the parallel GEP runs is presented. The implementation of this framework is based on a client–server architecture which includes clients that use GEP to evolve candidate solutions for the problem in question, and clients that use (possibly) other meta-heuristics to tune GEP input parameters. In the implementation of this framework, a genetic algorithms methodology is used for parameter tuning. For testing the framework and its implementation, a suite of symbolic regression problems of different complexities is used. Our experimental results show that our approach provides a solution for the problem of automatically tuning two GEP input parameters, viz., the number of genes and the length of each gene.
论文关键词:Evolutionary computation,Gene expression programming,Parallel architectures,Optimization techniques,Mathematical modeling
论文评审过程:Available online 8 December 2007.
论文官网地址:https://doi.org/10.1016/j.amc.2007.12.002