Convergence dynamics of Cohen–Grossberg neural networks with continuously distributed delays
作者:
Highlights:
•
摘要
In this paper, we consider the convergence dynamics of Cohen–Grossberg neural networks (CGNNs) with continuously distributed delays. Without assuming the differentiability and monotonicity of activation functions, the differentiability of amplification functions and the symmetry of synaptic interconnection weights, we construct suitable Lyapunov functionals and employ inequality technique to establish some sufficient conditions ensuring existence, uniqueness, global asymptotic stability, global exponential convergence, and even global exponential stability of equilibria. Our results are not only presented in terms of system parameters and can be easily verified and also less restrictive than previously known criteria and can be applied to neural networks including Hopfield neural networks, bidirectional association memory neural networks and cellular neural networks.
论文关键词:Cohen–Grossberg neural networks,Continuously distributed delays,Global exponential stability
论文评审过程:Available online 6 February 2008.
论文官网地址:https://doi.org/10.1016/j.amc.2008.01.030