Cesàro-type operators on some spaces of analytic functions on the unit ball

作者:

Highlights:

摘要

Let H(B) denote the space of all holomorphic functions on the unit ball B⊂Cn. In this paper we investigate the following integral operators:Tg(f)(z)=∫01f(tz)Rg(tz)dttandLg(f)(z)=∫01Rf(tz)g(tz)dtt,where f∈H(B),z∈B, g∈H(B) and Rh(z)=∑j=1nzj∂h∂zj(z) is the radial derivative of h. The operator Tg can be considered as an extension of the Cesàro operator on the unit disk. The boundedness and compactness of the operators Tg and Lg, on the Zygmund space and from the Zygmund space to the Bloch space are studied.

论文关键词:Extended Cesàro operator,Unit ball,Zygmund space,Bloch space,Boundedness,Compactness

论文评审过程:Available online 11 December 2008.

论文官网地址:https://doi.org/10.1016/j.amc.2008.12.006