Solving sum of quadratic ratios fractional programs via monotonic function
作者:
Highlights:
•
摘要
In this paper, a branch-reduce-bound algorithm is proposed for globally solving a sum of quadratic ratios fractional programming with nonconvex quadratic constraints. Due to its intrinsic difficulty, less work has been devoted to globally solving this problem. The proposed algorithm is based on reformulating the problem as a monotonic optimization problem, and it turns out that the optimal solution which is provided by the algorithm is adequately guaranteed to be feasible and to be close to the actual optimal solution. Convergence of the algorithm is shown and the numerical experiments are given to show the feasibility of the proposed algorithm.
论文关键词:Fractional programming,Sum of ratios,Nonisolated optimal solution,Branch-reduce-bound,Monotonic optimization
论文评审过程:Available online 16 February 2009.
论文官网地址:https://doi.org/10.1016/j.amc.2009.02.024