Controlling arrivals for a queueing system with an unreliable server: Newton-Quasi method

作者:

Highlights:

摘要

This paper deals with the control policy of a removable and unreliable server for an M/M/1/K queueing system, where the removable server operates an F-policy. The so-called F-policy means that when the number of customers in the system reaches its capacity K (i.e. the system becomes full), the system will not accept any incoming customers until the queue length decreases to a certain threshold value F. At that time, the server initiates an exponential startup time with parameter γ and starts allowing customers entering the system. It is assumed that the server breaks down according to a Poisson process and the repair time has an exponential distribution. A matrix analytical method is applied to derive the steady-state probabilities through which various system performance measures can be obtained. A cost model is constructed to determine the optimal values, say (F∗, μ∗, γ∗), that yield the minimum cost. Finally, we use the two methods, namely, the direct search method and the Newton-Quasi method to find the global minimum (F∗, μ∗, γ∗). Numerical results are also provided under optimal operating conditions.

论文关键词:F-policy,Matrix analytical method,Optimization,Newton-Quasi method,Startup,Server breakdowns

论文评审过程:Available online 9 March 2009.

论文官网地址:https://doi.org/10.1016/j.amc.2009.03.002