Convergence of a fixed point iteration method for the OSV model

作者:

Highlights:

摘要

In image processing, image denoising and texture extraction are important problems in which many new methods recently have been developed. One of the most important models is the OSV model [S. Osher, A. Solé, L. Vese, Image decomposition and restoration using total variation minimization and the H-1 norm, Multiscale Model. Simul. A SIAM Interdisciplinary J. 1(3) (2003) 349–370] which is constructed by the total variation and H-1 norm. This paper proves the existence of the minimizer of the functional from the OSV model and analyzes the convergence of an iterative method for solving the problems. Our iteration method is constructed by a fixed point iteration on the fourth order partial differential equation from the computation of the associated Euler–Lagrange equation, and the limit of our iterations satisfies the minimizer of the functional from the OSV model. In numerical experiments, we compare the numerical results of our works with those of the ROF model [L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D 60 (1992) 259–268].

论文关键词:Image decomposition,Restoration,Total variation,Texture,Partial differential equation,H-1 norm

论文评审过程:Available online 18 July 2009.

论文官网地址:https://doi.org/10.1016/j.amc.2009.07.026