A new coupled approach high accuracy numerical method for the solution of 3D non-linear biharmonic equations
作者:
Highlights:
•
摘要
In this paper, we derive a new fourth order finite difference approximation based on arithmetic average discretization for the solution of three-dimensional non-linear biharmonic partial differential equations on a 19-point compact stencil using coupled approach. The numerical solutions of unknown variable u(x,y,z) and its Laplacian ∇2u are obtained at each internal grid point. The resulting stencil algorithm is presented which can be used to solve many physical problems. The proposed method allows us to use the Dirichlet boundary conditions directly and there is no need to discretize the derivative boundary conditions near the boundary. We also show that special treatment is required to handle the boundary conditions. The new method is tested on three problems and the results are compared with the corresponding second order approximation, which we also discuss using coupled approach.
论文关键词:Finite differences,Arithmetic average discretization,Three-dimensional non-linear biharmonic equations,Laplacian,High accuracy,Compact approximation,Maximum absolute errors
论文评审过程:Available online 3 October 2009.
论文官网地址:https://doi.org/10.1016/j.amc.2009.09.052