Eigenparameter dependent discrete Dirac equations with spectral singularities
作者:
Highlights:
•
摘要
Let us consider the Boundary Value Problem (BVP) for the discrete Dirac Equations(0.1)an+1yn+1(2)+bnyn(2)+pnyn(1)=λyn(1)an-1yn-1(1)+bnyn(1)+qnyn(2)=λyn(2),n∈N,(0.2)(γ0+γ1λ)y1(2)+(β0+β1λ)y0(1)=0,where (an),(bn),(pn) and (qn),n∈N are complex sequences,γi,βi∈C,i=0,1 and λ is a eigenparameter. Discussing the eigenvalues and the spectral singularities, we prove that the BVP (0.1), (0.2) has a finite number of eigenvalues and spectral singularities with a finite multiplicities, if∑n=1∞exp(εnδ)(|1-an|+|1+bn|+|pn|+|qn|)<∞,holds, for some ε>0 and 12⩽δ⩽1.
论文关键词:Discrete Dirac equations,Spectral analysis,Discrete spectrum,Spectral singularities
论文评审过程:Available online 4 January 2010.
论文官网地址:https://doi.org/10.1016/j.amc.2009.12.043