Operator-splitting methods via the Zassenhaus product formula

作者:

Highlights:

摘要

In this paper, we contribute an operator-splitting method improved by the Zassenhaus product. Zassenhaus products are of fundamental importance for the theory of Lie groups and Lie algebras. While their applications in physics and physical chemistry are important, novel applications in CFD (computational fluid dynamics) arose based on the fact that their sparse matrices can be seen as generators of an underlying Lie algebra. We apply this to classical splitting and the novel Zassenhaus product formula. The underlying analysis for obtaining higher order operator-splitting methods based on the Zassenhaus product is presented. The benefits of dealing with sparse matrices, given by spatial discretization of the underlying partial differential equations, are due to the fact that the higher order commutators are very quickly computable (their matrix structures thin out and become nilpotent). When applying these methods to convection–diffusion-reaction equations, the benefits of balancing time and spatial scales can be used to accelerate these methods and take into account these sparse matrix structures.The verification of the improved splitting methods is done with numerical examples. Finally, we conclude with higher order operator-splitting methods.

论文关键词:Operator-splitting method,Iterative solver method,Weighting methods,Zassenhaus product,Parabolic differential equations

论文评审过程:Available online 5 November 2010.

论文官网地址:https://doi.org/10.1016/j.amc.2010.11.007