Local boundary element based a new finite difference representation for Poisson equations

作者:

Highlights:

摘要

We present a new finite difference method for solving Poisson’s equation with the Dirichlet boundary condition on a more general type of discretization for given domain, based on the local boundary element method. The method uses the piecewise linear approximation and produce a sparse linear system despite the use of boundary elements. The discrete maximum principal is established without any angle condition for the discrete cells of the discretization. The convergence behavior is comparable to that of standard finite difference methods on rectangle grids, and equally super-convergence property is attained on more general meshes when the solution u is in the function class C2,α(Ω¯)∪C3(Ω¯),0<α<1. Also, if u∈C3,1(Ω¯), the standard O(h2) convergence is obtained. Numerical tests are given, which illustrate our results.

论文关键词:Poisson’s equation,Boundary element integral,Finite difference formula

论文评审过程:Available online 13 December 2010.

论文官网地址:https://doi.org/10.1016/j.amc.2010.12.002