Performance analysis of the AM-SG parameter estimation for multivariable systems

作者:

Highlights:

摘要

The auxiliary model based stochastic gradient (AM-SG) parameter estimation method is an important identification one. This paper analyzes the performances of the AM-SG estimation algorithm for multiple-input single-output systems (i.e., multivariable systems) under the strong persistent excitation condition. The analysis and simulation results indicate that the parameter estimation errors converge to zero.

论文关键词:Recursive identification,Parameter estimation,Stochastic gradient,Auxiliary models,Multivariable systems,Convergence properties

论文评审过程:Available online 17 December 2010.

论文官网地址:https://doi.org/10.1016/j.amc.2010.12.030