Efficient orthogonal matrix polynomial based method for computing matrix exponential
作者:
Highlights:
•
摘要
The matrix exponential plays a fundamental role in the solution of differential systems which appear in different science fields. This paper presents an efficient method for computing matrix exponentials based on Hermite matrix polynomial expansions. Hermite series truncation together with scaling and squaring and the application of floating point arithmetic bounds to the intermediate results provide excellent accuracy results compared with the best acknowledged computational methods. A backward-error analysis of the approximation in exact arithmetic is given. This analysis is used to provide a theoretical estimate for the optimal scaling of matrices. Two algorithms based on this method have been implemented as MATLAB functions. They have been compared with MATLAB functions funm and expm obtaining greater accuracy in the majority of tests. A careful cost comparison analysis with expm is provided showing that the proposed algorithms have lower maximum cost for some matrix norm intervals. Numerical tests show that the application of floating point arithmetic bounds to the intermediate results may reduce considerably computational costs, reaching in numerical tests relative higher average costs than expm of only 4.43% for the final Hermite selected order, and obtaining better accuracy results in the 77.36% of the test matrices. The MATLAB implementation of the best Hermite matrix polynomial based algorithm has been made available online.
论文关键词:Differential equations,Matrix exponential,Hermite matrix polynomial approximation,Matrix polynomial evaluation,Error analysis
论文评审过程:Available online 6 January 2011.
论文官网地址:https://doi.org/10.1016/j.amc.2011.01.004