Twostep-by-twostep continuous PIRKN-type PC methods for nonstiff IVPs
作者:
Highlights:
•
摘要
In this paper, we start with the consideration of direct collocation-based Runge–Kutta-Nyström (RKN) methods with continuous output formulas for solving nonstiff initial-value problems (IVPs) for systems of special second-order differential equations y″(t) = f(t, y(t)). At nth step, the continuous output formulas can be used for calculating the step values at (n + 2)th step and the integration processes can be proceeded twostep-by-twostep. In this case, we obtain twostep-by-twostep RKN methods with continuous output formulas (continuous TBTRKN methods). Furthermore, we consider a parallel predictor–corrector (PC) iteration scheme using the continuous TBTRKN methods as corrector methods with predictor methods defined by the continuous output formulas. The resulting twostep-by-twostep parallel-iterated RKN-type PC methods with continuous output formulas (twostep-by-twostep continuous PIRKN-type PC methods or TBTCPIRKN methods) give us a faster integration processes. Numerical comparisons based on the solution of a few widely-used test problems show that the new TBTCPIRKN methods are much more efficient than the well-known PIRKN methods, the famous nonstiff sequential ODEX2, DOP853 codes and comparable with the CPIRKN methods.
论文关键词:Runge–Kutta–Nyström methods,Predictor–corrector methods,Stability,Parallelism
论文评审过程:Available online 5 March 2011.
论文官网地址:https://doi.org/10.1016/j.amc.2011.02.105