Bipanconnectivity of faulty hypercubes with minimum degree

作者:

Highlights:

摘要

In this paper, we consider the conditionally faulty hypercube Qn with n ⩾ 2 where each vertex of Qn is incident with at least m fault-free edges, 2 ⩽ m ⩽ n − 1. We shall generalize the limitation m ⩾ 2 in all previous results of edge-bipancyclicity. We also propose a new edge-fault-tolerant bipanconnectivity called k-edge-fault-tolerant bipanconnectivity. A bipartite graph is k-edge-fault-tolerant bipanconnected if G − F remains bipanconnected for any F ⊂ E(G) with ∣F∣ ⩽ k. For every integer m, under the same hypothesis, we show that Qn is (n − 2)-edge-fault-tolerant edge-bipancyclic and bipanconnected, and the results are optimal with respect to the number of edge faults tolerated. This not only improves some known results on edge-bipancyclicity and bipanconnectivity of hypercubes, but also simplifies the proof.

论文关键词:Hamiltonian,Pancyclicity,Panconnectivity,Bipanconnectivity,Fault-tolerant,Hypercube,Networks

论文评审过程:Available online 30 November 2011.

论文官网地址:https://doi.org/10.1016/j.amc.2011.11.041