Three-level parallel J-Jacobi algorithms for Hermitian matrices

作者:

Highlights:

摘要

The paper describes several efficient parallel implementations of the one-sided hyperbolic Jacobi-type algorithm for computing eigenvalues and eigenvectors of Hermitian matrices. By appropriate blocking of the algorithms an almost ideal load balancing between all available processors/cores is obtained. A similar blocking technique can be used to exploit local cache memory of each processor to further speed up the process. Due to diversity of modern computer architectures, each of the algorithms described here may be the method of choice for a particular hardware and a given matrix size. All proposed block algorithms compute the eigenvalues with relative accuracy similar to the original non-blocked Jacobi algorithm.

论文关键词:Hermitian matrices,Eigenvalues,J-Jacobi algorithm,Parallelization,Blocking,Block strategies,Efficiency

论文评审过程:Available online 3 December 2011.

论文官网地址:https://doi.org/10.1016/j.amc.2011.11.067