A generalization of the local Hermitian and skew-Hermitian splitting iteration methods for the non-Hermitian saddle point problems
作者:
Highlights:
•
摘要
For large sparse saddle point problems, Jiang and Cao studied a class of local Hermitian and skew-Hermitian splitting (LHSS) iteration methods (see M.-Q. Jiang, Y. Cao, On local Hermitian and skew-Hermitian splitting iteration methods for generalized saddle point problems, J. Comput. Appl. Math. 231 (2009) 973–982). In this paper, we generalized these methods and propose a class of generalized local Hermitian and skew-Hermitian splitting (GLHSS) iteration schemes for solving the non-Hermitian saddle point problems. We derive conditions for guaranteeing the convergence of these iterative methods. With different choices of the parameter matrices, the generalized iterative methods lead to a series of existing and new iterative methods. Numerical experiments for a model Stokes problem are provided, further show that the new iteration methods are feasible and effective.
论文关键词:Non-Hermitian saddle point problems,Hermitian and skew-Hermitian splitting,Iteration method,Convergence
论文评审过程:Available online 3 March 2012.
论文官网地址:https://doi.org/10.1016/j.amc.2012.02.040