Two classes of implicit–explicit multistep methods for nonlinear stiff initial-value problems
作者:
Highlights:
•
摘要
The initial value problems of nonlinear ordinary differential equations which contain stiff and nonstiff terms often arise from many applications. In order to reduce the computation cost, implicit–explicit (IMEX) methods are often applied to these problems, i.e. the stiff and non-stiff terms are discretized by using implicit and explicit methods, respectively. In this paper, we mainly consider the nonlinear stiff initial-value problems satisfying the one-sided Lipschitz condition and a class of singularly perturbed initial-value problems, and present two classes of the IMEX multistep methods by combining implicit one-leg methods with explicit linear multistep methods and explicit one-leg methods, respectively. The order conditions and the convergence results of these methods are obtained. Some efficient methods are constructed. Some numerical examples are given to verify the validity of the obtained theoretical results.
论文关键词:Stiff problems,Singular perturbation problems,Implicit–explicit multistep methods,One-leg methods,Linear multistep methods,Convergence
论文评审过程:Available online 16 September 2014.
论文官网地址:https://doi.org/10.1016/j.amc.2014.08.066