Switching from exact scheme to nonstandard finite difference scheme for linear delay differential equation
作者:
Highlights:
•
摘要
One-dimensional models are important for developing, demonstrating and testing new methods and approaches, which can be extended to more complex systems. We design for a linear delay differential equation a reliable numerical method, which consists of two time splits as follows: (a) It is an exact scheme at the early time evolution -τ⩽t⩽τ, where τ is the discrete value of the delay; (b) Thereafter, it is a nonstandard finite difference (NSFD) scheme obtained by suitable discretizations at the backtrack points. It is shown theoretically and computationally that the NSFD scheme is dynamically consistent with respect to the asymptotic stability of the trivial equilibrium solution of the continuous model. Extension of the NSFD to nonlinear epidemiological models and its good performance are tested on a numerical example.
论文关键词:Delay differential equations,Exact scheme,Nonstandard finite difference scheme,Dynamic stability
论文评审过程:Available online 2 March 2015.
论文官网地址:https://doi.org/10.1016/j.amc.2015.01.088