Asymptotic analysis for Markovian queues with two types of nonpersistent retrial customers
作者:
Highlights:
•
摘要
We consider Markovian multiserver retrial queues where a blocked customer has two opportunities for abandonment: at the moment of blocking or at the departure epoch from the orbit. In this queueing system, the number of customers in the system (servers and buffer) and that in the orbit form a level-dependent quasi-birth-and-death (QBD) process whose stationary distribution is expressed in terms of a sequence of rate matrices. Using a simple perturbation technique and a matrix analytic method, we derive Taylor series expansion for nonzero elements of the rate matrices with respect to the number of customers in the orbit. We also obtain explicit expressions for all the coefficients of the expansion. Furthermore, we derive tail asymptotic formulas for the joint stationary distribution of the number of customers in the system and that in the orbit. Numerical examples reveal that the tail probability of the model with two types of nonpersistent customers is greater than that of the corresponding model with one type of nonpersistent customers. They also reveal that the series expansion with a few terms can be used to obtain an accurate approximation to the stationary distribution.
论文关键词:Taylor series expansion,Asymptotic analysis,Multiserver retrial queue,Level-dependent QBD,Matrix analytic method,Censoring
论文评审过程:Received 14 June 2014, Revised 4 May 2015, Accepted 26 May 2015, Available online 16 June 2015, Version of Record 16 June 2015.
论文官网地址:https://doi.org/10.1016/j.amc.2015.05.133