Energy conservation issues in the numerical solution of the semilinear wave equation
作者:
Highlights:
•
摘要
In this paper we discuss energy conservation issues related to the numerical solution of the semilinear wave equation. As is well known, this problem can be cast as a Hamiltonian system that may be autonomous or not, depending on the prescribed boundary conditions. We relate the conservation properties of the original problem to those of its semi-discrete version obtained by the method of lines. Subsequently, we show that the very same properties can be transferred to the solutions of the fully discretized problem, obtained by using energy-conserving methods in the HBVMs (Hamiltonian Boundary Value Methods) class. Similar arguments hold true for different types of Hamiltonian partial differential equations, e.g., the nonlinear Schrödinger equation.
论文关键词:Semilinear wave equation,Hamiltonian PDEs,Energy-conserving methods,Hamiltonian Boundary Value Methods,HBVMs
论文评审过程:Received 7 May 2015, Revised 30 July 2015, Accepted 18 August 2015, Available online 14 September 2015, Version of Record 14 September 2015.
论文官网地址:https://doi.org/10.1016/j.amc.2015.08.078