The normalized Laplacian spectrum of subdivisions of a graph
作者:
Highlights:
•
摘要
Determining and analyzing the spectra of graphs is an important and exciting research topic in mathematics science and theoretical computer science. The eigenvalues of the normalized Laplacian of a graph provide information on its structural properties and also on some relevant dynamical aspects, in particular those related to random walks. In this paper, we give the spectra of the normalized Laplacian of iterated subdivisions of simple connected graphs. As an example of application of these results we find the exact values of their multiplicative degree-Kirchhoff index, Kemeny’s constant and number of spanning trees.
论文关键词:Normalized Laplacian spectrum,Subdivision graph,Degree-Kirchhoff index,Kemeny’s constant,Spanning trees
论文评审过程:Received 22 January 2016, Revised 3 April 2016, Accepted 18 April 2016, Available online 4 May 2016, Version of Record 4 May 2016.
论文官网地址:https://doi.org/10.1016/j.amc.2016.04.033