Shortcut sets for the locus of plane Euclidean networks

作者:

Highlights:

摘要

We study the problem of augmenting the locus Nℓ of a plane Euclidean network N by inserting iteratively a finite set of segments, called shortcut set, while reducing the diameter of the locus of the resulting network. There are two main differences with the classical augmentation problems: the endpoints of the segments are allowed to be points of Nℓ as well as points of the previously inserted segments (instead of only vertices of N), and the notion of diameter is adapted to the fact that we deal with Nℓ instead of N. This increases enormously the hardness of the problem but also its possible practical applications to network design. Among other results, we characterize the existence of shortcut sets, compute them in polynomial time, and analyze the role of the convex hull of Nℓ when inserting a shortcut set. Our main results prove that, while the problem of minimizing the size of a shortcut set is NP-hard, one can always determine in polynomial time whether inserting only one segment suffices to reduce the diameter.

论文关键词:Euclidean network,Diameter,Shortcut set,Network design,Augmentation problem

论文评审过程:Received 24 May 2016, Revised 4 April 2018, Accepted 8 April 2018, Available online 26 April 2018, Version of Record 26 April 2018.

论文官网地址:https://doi.org/10.1016/j.amc.2018.04.010