A new sampling interval fragmentation approach to synchronization of chaotic Lur’e systems

作者:

Highlights:

摘要

This paper investigates the issue of sampled-data synchronization for a class of chaotic Lur’e systems (CLSs), where a novel sampling interval fragmentation approach (SIFA) is proposed. To this end, first, by partitioning sampling interval into several nonuniform segments based on a geometric series and taking advantage of the convex combination technique, a newly discontinuous Lyapunov–Krasovskii functional (LKF) is developed for the first time to analyze the synchronization problem of such systems, which significantly uses more information on actual sampling behavior of the system. Meanwhile, an uniform sampling interval fragmentation approach (USIFA) is also taken into account. Then, some relaxed sampled-data synchronization criteria of concerned systems are formulated in framework of matrix inequalities with a larger sampling period. Two numerical simulations are provided to demonstrate the superiority and effectiveness of the derived results.

论文关键词:Synchronization,Chaotic Lur’e systems,Sampling interval fragmentation approach,Sampled-data control

论文评审过程:Received 22 June 2018, Revised 2 September 2018, Accepted 1 November 2018, Available online 5 December 2018, Version of Record 5 December 2018.

论文官网地址:https://doi.org/10.1016/j.amc.2018.11.009