An investigation on Monod–Haldane immune response based tumor-effector–interleukin-2 interactions with treatments
作者:
Highlights:
•
摘要
In this article, a mathematical model with time delay describing tumor immune interaction with Monod–Haldane kinetic response is proposed to reveal the dynamics of related inter-cellular phenomena. Positivity of the solutions, boundedness and uniform persistence of the system are determined to ensure the well-posedness of the system. The local stability of equilibria is studied as well as the length of the delay to preserve the stability is estimated for providing the mechanism of action to control the oscillation in tumor growth. Transcritical bifurcation using Sotomayer’s theorem and Hopf bifurcation are investigated analytically and numerically. Global stability is examined before the commencement of sustained oscillations using a suitable Lyapunov function. To observe the influence of tumor growth due to uncertainty in input parameters, Latin hypercube sampling based uncertainty analysis is performed followed by sensitivity analysis. Computer simulation results are illustrated to elucidate the change of dynamical behavior due to the change of system parameters.
论文关键词:Uniform persistence,Time delay,Transcritical bifurcation,Hopf bifurcation,Global stability,Sensitivity analysis
论文评审过程:Received 6 May 2019, Revised 15 May 2019, Accepted 20 May 2019, Available online 15 June 2019, Version of Record 15 June 2019.
论文官网地址:https://doi.org/10.1016/j.amc.2019.05.032