Option pricing with polynomial chaos expansion stochastic bridge interpolators and signed path dependence
作者:
Highlights:
•
摘要
Recent technological advances have made possible the obtention of vast amounts of market data and strong computing power for advanced models which would not have been practicable for use in real market settings before. In this manuscript we devise a model-free empirical risk-neutral distribution based on Polynomial Chaos Expansions coupled with stochastic bridge interpolators that includes information from the entire set of observable European call option prices under all available strikes and maturities for a given underlying asset in a way that is guaranteed by construction to produce a valid state price distribution function at all times. We also obtain a non parametric model for the risk premium behaviour via an optimisation problem that joins the risk-neutral Polynomial Chaos Expansion result with any general model for the real-world distribution. Finally, we show an empirical application on SP500 Options on Futures using a real-world distribution that assumes the presence of signed path dependence in the returns of the underlying asset.
论文关键词:Option pricing,Polynomial chaos expansion,Signed path dependence,Time series momentum,Mixture models
论文评审过程:Received 5 April 2021, Revised 17 June 2021, Accepted 25 June 2021, Available online 14 July 2021, Version of Record 14 July 2021.
论文官网地址:https://doi.org/10.1016/j.amc.2021.126484