A Multi-criteria Convex Quadratic Programming model for credit data analysis
作者:
摘要
Speed and scalability are two essential issues in data mining and knowledge discovery. This paper proposed a mathematical programming model that addresses these two issues and applied the model to Credit Classification Problems. The proposed Multi-criteria Convex Quadric Programming (MCQP) model is highly efficient (computing time complexity O(n1.5–2)) and scalable to massive problems (size of O(109)) because it only needs to solve linear equations to find the global optimal solution. Kernel functions were introduced to the model to solve nonlinear problems. In addition, the theoretical relationship between the proposed MCQP model and SVM was discussed.
论文关键词:Data mining,Classification,Mathematical programming,Multiple criteria decision making,Multi-criteria Convex Quadric Programming (MCQP)
论文评审过程:Received 13 April 2006, Revised 26 November 2007, Accepted 2 December 2007, Available online 8 December 2007.
论文官网地址:https://doi.org/10.1016/j.dss.2007.12.001