βP: A novel approach to filter out malicious rating profiles from recommender systems
作者:
Highlights:
•
摘要
Recommender systems are widely deployed to provide user purchasing suggestion on eCommerce websites. The technology that has been adopted by most recommender systems is collaborative filtering. However, with the open nature of collaborative filtering recommender systems, they suffer significant vulnerabilities from being attacked by malicious raters, who inject profiles consisting of biased ratings.In recent years, several attack detection algorithms have been proposed to handle the issue. Unfortunately, their applications are restricted by various constraints. PCA-based methods while having good performance on paper, still suffer from missing values that plague most user–item matrixes. Classification-based methods require balanced numbers of attacks and normal profiles to train the classifiers. The detector based on SPC (Statistical Process Control) assumes that the rating probability distribution for each item is known in advance. In this research, Beta-Protection (βP) is proposed to alleviate the problem without the abovementioned constraints. βP grounds its theoretical foundation on Beta distribution for easy computation and has stable performance when experimenting with data derived from the public websites of MovieLens.
论文关键词:Shilling attacks detection,Collaborative filtering,Recommender systems
论文评审过程:Received 25 June 2012, Revised 11 November 2012, Accepted 24 January 2013, Available online 4 February 2013.
论文官网地址:https://doi.org/10.1016/j.dss.2013.01.020