A probabilistic data-driven framework for scoring the preoperative recipient-donor heart transplant survival
作者:
Highlights:
• A model that provides competitive predictors for 9-year heart transplantation outcomes.
• The BBN model presents data-driven insights into how the predictors interact.
• The result of the methodology is a novel individualized risk score for heart transplant outcomes.
• A decision support tool is provided to assist practitioners in characterizing a heart transplant's risk.
摘要
Recent research has shown that data mining models can accurately predict the outcome of a heart transplant based on predictors that include patient and donor's health/demographics. These models have not been adopted in practice, however, since they did not: a) consider the interactions between the explanatory variables; b) provide a patient's specific risk of survival (reported results have been primarily deterministic); and c) offer an automated decision tool that can provide some data-driven insights to practitioners. In this study, we attempt to overcome these three limitations through the use of Bayesian Belief Networks (BBN). The proposed BBN framework is comprised of four phases. In the first two phases, the data is preprocessed, and a candidate set of predictors is generated based on employing several variable selection methods. The third phase involves the addition of medically relevant variables to the list. In phase four, the BBN model is applied. The results show that the proposed BBN method provides similar predictive performance to the best approaches in the literature. More importantly, our method provides novel information on the interactions among the predictors and the conditional probability of survival for a given set of relevant donor–recipient characteristics. We offer U.S. practitioners a decision support tool that presents an individualized survival score based on our BBN model (and the UNOS dataset).
论文关键词:Healthcare analytics,Bayesian Belief Networks,Medical decision making,Data mining,Genetic algorithms,United Network for Organ Sharing (UNOS)
论文评审过程:Received 14 March 2015, Revised 19 February 2016, Accepted 20 February 2016, Available online 3 March 2016, Version of Record 8 May 2016.
论文官网地址:https://doi.org/10.1016/j.dss.2016.02.007