Social influence-based contrast language analysis framework for clinical decision support systems

作者:

Highlights:

• A social influence-based contrast language framework is proposed.

• Proposed approach enhances predictive accuracy in early depression diagnosis.

• Framework enhances features and functionalities of CDSSs to support clinicians.

• Constructive insights obtained for early intervention, diagnosis, treatment plans.

• A case study and experiments with a real dataset show improvements over baselines.

摘要

Depression is a leading mental health problem affecting 300 million people globally. Recent studies show that social networks provide a tremendous potential for mental health professionals as a source of supplemental information about their patients. This study presents a methodological framework for clinical decision support systems (CDSSs) through analysis of social network data to distinguish the language usage of individuals with early signs of depression (i.e., contrast language analysis). By analyzing the contrast language patterns of different user groups, we are able to uncover constructive and actionable insights into the pain points and characteristics of users with signs of depression as decision support mechanisms for clinicians during intervention, (early) diagnosis and treatment plans. First, we discover terms that represent contrasting language by analyzing the percentage difference of terms in two user groups, labeled as”depressed” and”non-depressed” for ease of reference. Second, by building topic models based on social network contents, the topic-level contrast features are discovered. Finally, we consider the structure of the social network to discover the network-level contrast features. To illustrate the effectiveness of the proposed framework, we present a case study on early depression detection using a real-world dataset. The proposed framework has methodological contributions in enhancing the features and functionalities of CDSS for clinicians. It also contributes to evidence-based health research through cost-effective data and analytical insights that can supplement or improve the traditional survey and time-consuming interview methods.

论文关键词:Contrast language analysis,Clinical Decision Support System (CDSS),Depression detection,Social network

论文评审过程:Received 7 October 2021, Revised 28 April 2022, Accepted 10 May 2022, Available online 20 May 2022, Version of Record 10 June 2022.

论文官网地址:https://doi.org/10.1016/j.dss.2022.113813