Cluster-based instance selection for machine classification
作者:Ireneusz Czarnowski
摘要
Instance selection in the supervised machine learning, often referred to as the data reduction, aims at deciding which instances from the training set should be retained for further use during the learning process. Instance selection can result in increased capabilities and generalization properties of the learning model, shorter time of the learning process, or it can help in scaling up to large data sources. The paper proposes a cluster-based instance selection approach with the learning process executed by the team of agents and discusses its four variants. The basic assumption is that instance selection is carried out after the training data have been grouped into clusters. To validate the proposed approach and to investigate the influence of the clustering method used on the quality of the classification, the computational experiment has been carried out.
论文关键词:Machine learning, Data mining, Instance selection, Multi-agent system
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10115-010-0375-z