Improved concept drift handling in surgery prediction and other applications
作者:Ayne A. Beyene, Tewelle Welemariam, Marie Persson, Niklas Lavesson
摘要
The article presents a new algorithm for handling concept drift: the Trigger-based Ensemble (TBE) is designed to handle concept drift in surgery prediction but it is shown to perform well for other classification problems as well. At the primary care, queries about the need for surgical treatment are referred to a surgeon specialist. At the secondary care, referrals are reviewed by a team of specialists. The possible outcomes of this review are that the referral: (i) is canceled, (ii) needs to be complemented, or (iii) is predicted to lead to surgery. In the third case, the referred patient is scheduled for an appointment with a surgeon specialist. This article focuses on the binary prediction of case three (surgery prediction). The guidelines for the referral and the review of the referral are changed due to, e.g., scientific developments and clinical practices. Existing decision support is based on the expert systems approach, which usually requires manual updates when changes in clinical practice occur. In order to automatically revise decision rules, the occurrence of concept drift (CD) must be detected and handled. The existing CD handling techniques are often specialized; it is challenging to develop a more generic technique that performs well regardless of CD type. Experiments are conducted to measure the impact of CD on prediction performance and to reduce CD impact. The experiments evaluate and compare TBE to three existing CD handling methods (AWE, Active Classifier, and Learn++) on one real-world dataset and one artificial dataset. TBA significantly outperforms the other algorithms on both datasets but is less accurate on noisy synthetic variations of the real-world dataset.
论文关键词:Concept drift, Surgery prediction, Trigger-based ensemble
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10115-014-0756-9