The examination of the effect of the criterion for neural network’s learning on the effectiveness of the qualitative analysis of multidimensional data

作者:Dariusz Jamróz

摘要

A variety of multidimensional visualization methods are applied for the qualitative analysis of multidimensional data. One of the multidimensional data visualization methods is a method using autoassociative neural networks. In order to perform visualizations of n-dimensional data, such a network has n inputs, n outputs and one of the interlayers consisting of two outputs whose values represent coordinates of the analyzed sample’s image on the screen. Such a criterion for the network’s learning consists in that the same value as the one at the ith input appears at each ith output. If the network is trained in this way, the whole information from n inputs was compressed to two outputs of the interlayer and then decompressed to n network outputs. The paper shows the application of different learning criteria can be more beneficial from the point of view of the results’ readability. Overall analysis was conducted on seven-dimensional real data representing three coal classes, five-dimensional data representing printed characters, 216-dimensional data representing hand-written digits and, additionally, in order to illustrate additional explanations using artificially generated seven-dimensional data. Readability of results of the qualitative analysis of these data was compared using the multidimensional visualization utilizing neural networks for different learning criteria. Also, the obtained results of applying all analyzed criteria on 20 randomly selected sets of multidimensional data obtained from one of the publicly available repositories are presented.

论文关键词:Multidimensional data analysis, Data mining, Multidimensional visualization, Self-organized neural network, Autoassociative neural network

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10115-020-01441-8