Evidential positive opinion influence measures for viral marketing

作者:Siwar Jendoubi, Arnaud Martin

摘要

The viral marketing is a relatively new form of marketing that exploits social networks to promote a brand, a product, etc. The idea behind it is to find a set of influencers on the network that can trigger a large cascade of propagation and adoptions. In this paper, we will introduce an evidential opinion-based influence maximization model for viral marketing. Besides, our approach tackles three opinion-based scenarios for viral marketing in the real world. The first scenario concerns influencers who have a positive opinion about the product. The second scenario deals with influencers who have a positive opinion about the product and produces effects on users who also have a positive opinion. The third scenario involves influence users who have a positive opinion about the product and produce effects on the negative opinion of other users concerning the product in question. Next, we proposed six influence measures, two for each scenario. We also use an influence maximization model that the set of detected influencers for each scenario. Finally, we show the performance of the proposed model with each influence measure through some experiments conducted on a generated dataset and a real-world dataset collected from Twitter.

论文关键词:Influence maximization, Influence measure, User opinion, Theory of belief functions, Viral marketing

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10115-019-01375-w