Machine learning friendly set version of Johnson–Lindenstrauss lemma
作者:Mieczysław A. Kłopotek
摘要
The widely discussed and applied Johnson–Lindenstrauss (JL) Lemma has an existential form saying that for each set of data points Q in n-dimensional space, there exists a transformation f into an \(n'\)-dimensional space (\(n'
论文关键词:Johnson–Lindenstrauss lemma, Random projection, Sample distortion, Dimensionality reduction, Linear JL transform, k-means algorithm, Clusterability retention
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10115-019-01412-8