Conversational question answering: a survey
作者:Munazza Zaib, Wei Emma Zhang, Quan Z. Sheng, Adnan Mahmood, Yang Zhang
摘要
Question answering (QA) systems provide a way of querying the information available in various formats including, but not limited to, unstructured and structured data in natural languages. It constitutes a considerable part of conversational artificial intelligence (AI) which has led to the introduction of a special research topic on conversational question answering (CQA), wherein a system is required to understand the given context and then engages in multi-turn QA to satisfy a user’s information needs. While the focus of most of the existing research work is subjected to single-turn QA, the field of multi-turn QA has recently grasped attention and prominence owing to the availability of large-scale, multi-turn QA datasets and the development of pre-trained language models. With a good amount of models and research papers adding to the literature every year recently, there is a dire need of arranging and presenting the related work in a unified manner to streamline future research. This survey is an effort to present a comprehensive review of the state-of-the-art research trends of CQA primarily based on reviewed papers over the recent years. Our findings show that there has been a trend shift from single-turn to multi-turn QA which empowers the field of Conversational AI from different perspectives. This survey is intended to provide an epitome for the research community with the hope of laying a strong foundation for the field of CQA.
论文关键词:Question answering, Conversational agents, Conversational machine reading comprehension, Knowledge base, Conversational AI
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10115-022-01744-y