Data pricing in machine learning pipelines
作者:Zicun Cong, Xuan Luo, Jian Pei, Feida Zhu, Yong Zhang
摘要
Machine learning is disruptive. At the same time, machine learning can only succeed by collaboration among many parties in multiple steps naturally as pipelines in an eco-system, such as collecting data for possible machine learning applications, collaboratively training models by multiple parties and delivering machine learning services to end users. Data are critical and penetrating in the whole machine learning pipelines. As machine learning pipelines involve many parties and, in order to be successful, have to form a constructive and dynamic eco-system, marketplaces and data pricing are fundamental in connecting and facilitating those many parties. In this article, we survey the principles and the latest research development of data pricing in machine learning pipelines. We start with a brief review of data marketplaces and pricing desiderata. Then, we focus on pricing in three important steps in machine learning pipelines. To understand pricing in the step of training data collection, we review pricing raw data sets and data labels. We also investigate pricing in the step of collaborative training of machine learning models and overview pricing machine learning models for end users in the step of machine learning deployment. We also discuss a series of possible future directions.
论文关键词:Data assets, Data pricing, Data products, Machine learning, AI
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10115-022-01679-4