An automated palmprint recognition system
作者:
Highlights:
•
摘要
Recently, biometric palmprint has received wide attention from researchers. It is well-known for several advantages such as stable line features, low-resolution imaging, low-cost capturing device, and user-friendly. In this paper, an automated scanner-based palmprint recognition system is proposed. The system automatically captures and aligns the palmprint images for further processing. Several linear subspace projection techniques have been tested and compared. In specific, we focus on principal component analysis (PCA), fisher discriminant analysis (FDA) and independent component analysis (ICA). In order to analyze the palmprint images in multi-resolution-multi-frequency representation, wavelet transformation is also adopted. The images are decomposed into different frequency subbands and the best performing subband is selected for further processing. Experimental result shows that application of FDA on wavelet subband is able to yield both FAR and FRR as low as 1.356 and 1.492% using our palmprint database.
论文关键词:Biometric,Palmprint recognition,Palmprint pre-processing,Subspace projection methods,Similarity matching
论文评审过程:Received 13 March 2004, Revised 10 November 2004, Accepted 14 January 2005, Available online 21 February 2005.
论文官网地址:https://doi.org/10.1016/j.imavis.2005.01.002